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The boundary conditionscorrespondingto the design problem when the bladesbeing simulated by the

bound vorticitydistributionare presented.The 3D flowisanalyzed by the two steps $2 - $1 approach. In

the firststep,the number of bladesissupposed to be infinite,the vortex distributionistransformed intoan

a.xisymmetricone, so that the flow fieldcan be analyzed in a meridionalplane. The thicknessdistributionof

the blade producing the flow channel strictionistaken intoaccount by the modificationof metric tensorin

the continuityequation.Using the meridionalstream functiontodefinethe flowfield,the mass conservationis

satisfiedautomatically.The governingequationisdeduced from the relationbetween the azimuthal component

ofthe vorticityand the meridionalvelocity.The value ofthe azimuthalcomponent ofthe vorticityisprovided

by the hub to shroud equilibriumcondition.This step leadstothe determinationof the axisymmetric stream

sheetsaswellasthe approximate camber surfaceofthe blade.In the second step,the finitenumber ofbladesis

taken intoaccount,the inverseproblem correspondingtothe blade to bladeflow confinedineach stream sheet

isanalyzed. The momentum equation impliesthat the freevortexof the absolutevelocitymust be tangential

to the stream sheet.The governingequation forthe blade to blade flow stream functionisdeduced from this

condition. At the beginning, the upper and the lower surfaces of the blades axe created from the camber surface
obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the

penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the

inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.
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angularvelocityof the rotor

pressure

totalpressure

stagnationenthalpy or lot/P

rothalpy or H + w(Vo)

blade force

dissipative force

efficiency
transformed coordinates system in S1 approach

leadingedge

trailingedge

reference

tangentielcomponent

normal component

nodal pointindices

upper side of the blade
lower side of the blade

1. INTRODUCTION.

Most of the blading design procedures consider the velocity distribution on both sides of the blade as the

initial data, the inverse problem becomes iU-posed and the designer loses the control of thickness distribution of
the blade. To overcome this deficiency, this paper suggests an inverse method by representing the blades by a
distribution of bound and free vortices which produce the desired swirl (Vor) variation. By introduction of the

notion of associated elements on both sides of the blade in respect of the thickness distribution, and by imposing

a conservative flux penetration through each pair of the associated elements when the geometry of the blade

is not yet well defined, we obtain the well-posedness of the inverse problem. The iterative rectification of the
camber surface in order to cancel the flow penetration leads to the final geometry of the blade. Treating first

the 2D cascade design, §2 is devoted to show how to get the well posed inverse problem with the appropriate

boundary conditions applied on the presumed blade contour, and the procedure leading to the rectification of
the camber line related to the penetrating flux of the fluid determined on both sides of the blade. To treat the

quasi 3D design, the $2 and $1 approach as proposed by C.H. Wu [1] is adopted. The loading produced by the
velocity difference between the two faces of the blade is directly related to the bound vorticity distribution that

the blade has to generate. Assuming the number of blades infinite, the vortex distribution as well as the flow

field become axisymmetric {$2 flow}, §3 shows how the blade thickness distribution and the loading distribution
can be taken into account in this scheme, and how to deduce the pressure distribution on the blades when their

number is finite. An application to the case of the centrifugal impeller is presented. The loss scheme by the

introduction of a plausible value of efficiency 17for each streamline as suggested by J.H. Horlock [2] is used. This

approach opens up possibilities for the elaboration of a design which maintains the assigned value of the total

pressure gain in each stage by modifying the (Vsr} distribution in free space between blade rows. §4 is devoted
to the blade to blade flow {$1) inverse problem, the boundary conditions for 2D inverse problem are transposed

to this quasi-3D flow. The stream function is used to define the flow field and the finite volume method is used

to solve the problem. Examples show the results concerning the design of centrifugal impeller.

2. INVERSE PROBLEM FOR THE 2D CASCADE.

Figure 1 shows the geometry ofthe blade characterizedby itsthicknessdistributionand the shape of

itscamber line.The arc elements taken respectivelyon the upper side and the lower sidetangentialto two

inscribedcirclescenteredon the camber lineatz - dz/2 and z + dz/2 are calledassociatedto the camber line

element. The centeroftheseassociatedelements are characteri_edby the abscissaz ofthe camber lineelement.

Let Vo representthe upstream velocity,h the pitchofthe cascade,a and/9 the inletand outletflow angles,the

circulationr ofthe bound vortex generatedby the blade isgivenby:
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r = Voh(sin a - cos a tan _)

The bound vortex distribution on the blade can be represented by the function F/(x), where f(z) has to be a

monotonic increasing function of x for the inverse problem: /(xte) = 0, /(xt_) = I and d//dz > 0 defines the

local loading. Figure 2 shows the typicalform of the function/(x), df/dx = 0 must be imposed near the trailing

edge in order to obtain the sero loading according to the Kutta-Joukowsky condition; when the zero loading

condition is imposed near the leading edge, the design will give a blade with adapted leading edge. The flow

fieldcan be represented by the velocity potential ¢ or by the stream function ¢, the assignment of the bound

vortex distribution leads respectively to the following boundaxy condition applied on the associated elements

on both sides of the blade 13}:

1¢1_+ = or 'O.raCd ]+-=

As the boundary condition is imposed on the presumed contour of the blade, the penetration of the fluid must

be admitted., In order that the boundary condition does not produce extra flux, the flux penetration through

each pair of associated elements is to be conservative, this implies:

OCdl]+=O or [¢1_+=0 (2.2}
an -

The solution of the inverse problem determines the fluxpenetrating through the associated boundary elements,

the camber lineinclination correction//t9isgiven by:

= + (2.3)

Using this,the camber linerectificationisperformed iteratively.For the 2D incompressible potential flow, the

complex potential ¢ + i¢ is an analytical function of x + iy, the panel method using the multiform singularities

distribution described in [4]was used firstlyto solve the inverse problem with success, this confirms that the

boundary problem iscorrectlyformulated. Figure 3 shows the initialand the finalshape of a blade designed with

adapted leading edge and with an appropriate loading distribution to prevent the boundary layer separation.

3. MERIDIONAL FLOW, $2 APPROACH.

In the firststep, the vortex distribution is transformed into an axisymmetric one by spreading it in the

a_imuthal direction, this situation is equivalent to the case where the number of blades in the rotor or in the

stator isassumed to be oo, the flow fieldbecomes also axisymmetric and can be analysed in a meridional plan.

Let _x _ = 0, and _s represent the body fittedcurvilinear coordinates (Fig. 4), the meridional velocity is

represented by: 0 = VIFI + V3F3 ----WI_*I + W3_3, the continuity equation becomes:

where _ represents the determinant of the modified metric tensor due to the flow channel strictionproduced by

the thickness of the blades. Indeed, V_ represents the volume of the elementary cube: (F3 x e'1}•F2, in the free

space IF_I= _ = r, and in the blade row space the thickness of the blade reduces the flow channel, ifr60_

denotes the thickness measured in the peripheral directionD Nb the number of blades in the rotor or stator, the

modified element _2 of the metric tensor is determined by:

_22=(I /¢b60"12_;,r2

simulating the elementary volume with strictionin (3.1) is evaluated with g2a. Using the stream function
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to represent the flow field by' imposing:

U* = 1 a¢ ¢t US_________l at_ (3.2)
a_' v7_ae

the equation (3.1) is satilfied automatical])'. The gove._g equation for _ i, obeyed by writing _ x U = f_'2,

where f}2 represents the uimuthL] component of V x _, it is deduced from the hub to shroud equ_brium

= H + _ (V,_)
2

{17 {-_H _b _d { |tat°r" g, = -vs +7 +7 _otor (3.3)

h fact, there ia s pressure gradient in the aaimuthL] direction in the flow space between blades, in the axis]

symmetric S2 flow where the number of blade_ iJ supposed infinite, thiJ pressure gradient disappear| and the
wolume force afb/p due to the blades hu to be added in the momentum equation. The los* scheme [2] rel&ted

to the plausible value of efSciency t7 for each etreamline of the stage is a_ded, this scheme suggests that the

diuipstive force Fa/p is related to the vaxistion de V¢ vii iT:

._d f (n- 1)Iv_-_l¢ vcv¢)]_ ,tator

"7 = _,(:-_)#_I_ .vCV,_)]_ ,otor
(3.4)

_d = 0 _ well _ -_b = 0 are imposed in the free space. Figure S shows the relation between the kinetic moment
distribution in the blade row space and the circulation of the bound vortices produced by the bibles. Let re

denote the circulation generated by the blade in the section cut by an axisymmetric stream surface _ = cte, the

kinetic moment (Ver)m,k generated by the bound vortices located between the leading edge _ud the abscissa m

can be represented by:.
RL

(v,,)=..= (v,,),...+ _r_l(m._) (a.s)

Using (3.4) and adopting that _I/8_ _ or 8tt/B_ _ being equal to -(F_)a/p in the dissipative scheme, the
asimuthal component of the momentum equation leads to:

a(Vor) O(V¢) (3.6)(F_}_= [v__g_ +vsoo_ ]P

where W_ = V¢ + w@ and V_ = Vev. The coordinates system _ is chosen *0 that the constant (s lines axe

iterstively replaced by the streamlines. The component following _.s of the momentum equation represents the

hub to shroud equilibrium condition, which gives:

(n), (r_),] _,otor (a.v)
p p ( ststor

Let ,_ design the normal of the camber surface of the blade, we have:

As I_ .i E in the rotor and Q £ K in the ststor, we have:

and _ I[_-,we by,e:
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Usm_ (S.4),(S.6),_d the l,-t S relations, (3.7)becomes: l

,,,a(v,,) .,a(v,.)

(_- ,7)T-_ _[v, a(vo,-)
( (,I- 1)(-#-_ v" a_'

a(v,,.) { rotor (_.sa)+ v ---_-] ,tutor

].u the free sp_ce,the component following _-s of the momentum equation lenA• directly to:

freespace = }

The dot product of the momentum equation with _7 Jm the stator and in the free space or with _ i_ the rotor

leadJ to the follvwi, g relations which serve to update the nodal vaJues of H or I:

free spLce _// { 0,tato_ a'-_= (,7- 1),_a(vsd (s.ga)

= (1 _ ,_),. O(V,,')rotor (3.9b)

where 8( )/grn denotes the meridion_ stret_nwise ttngentit.] derivative. Writing V x [_ = f}2£2, we obta.in

the gov_g equation of ¢:

(3._0)

For the inverte problem, the distribution of Vsr b _igned, using (3.8),Cl= b updated iterttively. Let the

camber audio of the blade be defined by # = _2(_,_s) -t- _te, if the coord_ate lines _ = _te axe updated to
the streamlines iteratively, _ can be computed using the slip condition:

' U ={== _.+ _-_d__ (3.ii)

Figure 5 shows the geometry of the bl_g of a multistage turbopump obta3_ed by solving the inverse problem.

The CPU time on IBM 3090 in tcalar mode is _bout l minute for the entire turbopump. The grid used for the

S2 computation is 300x16. Figure 6 shows the compaxkon of the centrifugal impellers designed with t7 = 1 and
< 1 having the same |eve] of tot_l pressure gain.

]Blade outface pressure evaluation. -- Usua]Jy the $2 appro_h lead_ to the determination of the mea_

velocity on both f_es of the blade:

rotOrstator WV = [g_VIV_ +2g_sVIV_'Fm-_V}V}'F _2_(Vsr + wr_)_ ] (3.I2)

Let AU denote the difference of the absolute velocitie_ (V* - V-) or the relative velocity (W* - W-) on the

two _ces of the blade, when the number of blades is tlnite, this diEerence is related to the locaJ density of

bound vortex generated by the blade. In the $2 scheme, consider the blade section cut by • fs = cat surface,

the flux of bound vortices generated by the element _f_ of the blade is determined by the t_ux of t_ tb.rough

the elementary surface (_$)_F s = _/_f2F_, where _2 should be equal to 2w/N_. Using the Stokes relation
that imp_,es the drculation produced by _U is equal to the t_u_ of the bound vortices we get the foUowL_g
relation:

2, _ ilV,,.i:_.,/_.,. (z.131('_U'}o, = ?6, _/="
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where _ denotes the local angle of the blade section with respect to the meridional plane. (3.12) and (3.13) axe
used to compute surface velocity on both faces of the blades, then the pressure distribution by the $2 approach

can be deduced. {Fig. 9)

4. BLADE TO BLADE FLOW, S1 APPROACH.

The blade to blade flow confined in each axisymmetric stream sheet is analyzed in order to define the final

geometry for each section of the blade and to obtain the pressure distribution. At the beginning, the contour
of the blade is created from the camber line obtained from the $2 step with the assigned thickness distribution.

The conformal mapping (m, 8) ==_ (z 1, x2):

x fm drn

= 7" O

J,_° r

z= ro(O- Oo}
{4.1}

transforms the blade to blade flow confined in an axisymmetric stream sheet into a 2D cascade flow in the

(xl,x 2} plane. The body fitted coordinate system constituted by the equipotential lines _x = cte and the

streamlines _2 = cte of a fictive 2D flow around the cascade is created using the panel method [4]. In this

system, the continuity equation becomes:

1 [O-_{pvfgU1)+_--_(px/gU2)] =0Vz (4.2)

where U _ represent the contravariant components of the absolute velocity I7 for the stator and relative velocity
I,V for the rotor and

D(xl, z2) (r)2 r
v_= D(_:_ 2) ro

where D(x 1, za)/D(_ 1, _a) denotes the Jacobian, r represents the local thickness of the stream sheet. Introduc-
ing the stream function ¢ with

U = 1 a¢
PV'ga_¢2 (4.3)

U2 _ 1 0¢
pv_o_ 1

{4.2) is satisfied. From the momentum equation, we can show that the free vortex of the absolute velocity
shedding from the preceeding blade row must be tangential to the axisymetric stream sheet, the governing

equation of the blade to blade flow stream function is deduced from this condition: for the relative flow around

the blades of the rotor, we have:

c _- (pylon, a_'pv_a_

092_w_ ag_2w______ 2v_T d log,a_ I + O_= + dm
(4.4}

Boundary conditions for the inverse problem:

Flux conservation: 1¢]_+= 0 {4.5)Bound vorticityassigned: [WI d_1 - w r_dO]+_= rdf

The solution of the inverse problem leads to the determination of flux penetration on the blade contour, the
camber line inclination correction 6d is given by:

-1 v_ W2 + ('¢?W2_
60=0.5[tan (T_-_l) +tan-',T_T,- ] (4.6}
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Figure 7 shows the network (¢1, _2) around a blade row for an impeller. Figure 8 shows the comparison
of the camber lines of the impeller obtained from the $2 approach and rectified by the $1 approach. Figure 9

shows the pressure distributions obtained from the $2 and $1 approaches. For the case of the turbopump, the

loading is optimised to avoid the cavitation. The results from the $2 and $1 computations are similar, but not
identical, the need of the $1 computation to obtain the final geometry definition of the blades is confirmed. For

one stream sheet, the CPU time on a IBM workstation RISC 6000/320 is about 40 minutes, or about 5 minutes
on IBM 3090 in scalar mode. The grid used is 150×16.

5. CONCLUSION.

The representation of the blades by the vortex distribution enables the formulation of the well-posed

inverse problem, and which leads to design the blading of a turbomachine. The two steps $2 - S1 quasi-3D

approach has been applied on different axial and radial geometries. Several kinds of loading function have
been tried. The results show that the success of the blading design depends greatly on the meridional (Vor)

distribution assignment associated with the loss distribution. To optimise the design in order to avoid the
formation of the cavitation or the separation of the boundary layer in the design condition, when the loading

is not too high, experiences show that an adequate modification of the bound vortices distribution function ]

may effectively lead to prevent the surface pressure to be lower than the cavitation level or to maintain the
adverse pressure gradient below the boundary layer separation criterion. The inverse problem procedure has
been elaborated to calculate the turbomachines in incompressible range, the research works are planning to

extend this method to make the transonic designs.
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Meridional section of a multistage turbopump.

The blading obtained by the $2 inverse solution.

Fig. 5. The blading of a multistage turbopump.L J
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